Synergistic enhancement of NK cell-mediated cytotoxicity by combination of histone deacetylase inhibitor and ionizing radiation
نویسندگان
چکیده
BACKGROUND The overexpression of histone deacetylase (HDAC) and a subsequent decrease in the acetylation levels of nuclear histones are frequently observed in cancer cells. Generally it was accepted that the deacetylation of histones suppressed expression of the attached genes. Therefore, it has been suggested that HDAC might contribute to the survival of cancer cells by altering the NKG2D ligands transcripts. By the way, the translational regulation of NKG2D ligands remains unclear in cancer cells. It appears the modulation of this unclear mechanism could enhance NKG2D ligand expressions and the susceptibility of cancer cells to NK cells. Previously, it was reported that irradiation can increase the surface expressions of NKG2D ligands on several cancer cell types without increasing the levels of NKG2D ligand transcripts via ataxia telangiectasia mutated and ataxia telangiectasia and Rad3 related (ATM-ATR) pathway, and suggested that radiation therapy might be used to increase the translation of NKG2D ligands. METHODS Two NSCLC cell lines, that is, A549 and NCI-H23 cells, were used to investigate the combined effects of ionizing radiation and HDAC inhibitors on the expressions of five NKG2D ligands. The mRNA expressions of the NKG2D ligands were quantitated by multiplex reverse transcription-PCR. Surface protein expressions were measured by flow cytometry, and the susceptibilities of cancer cells to NK cells were assayed by time-resolved fluorometry using the DELFIA® EuTDA cytotoxicity kit and by flow cytometry. RESULTS The expressions of NKG2D ligands were found to be regulated at the transcription and translation levels. Ionizing radiation and HDAC inhibitors in combination synergistically increased the expressions of NKG2D ligands. Furthermore, treatment with ATM-ATR inhibitors efficiently blocked the increased translations of NKG2D ligands induced by ionizing radiation but did not block the increased ligand translations induced by HDAC inhibitors. The study confirms that increased NKG2D ligand levels by ionizing radiation and HDAC inhibitors could synergistically enhance the susceptibilities of cancer cells to NK-92 cells. CONCLUSIONS This study suggests that the expressions of NKG2D ligands are regulated in a complex manner at the multilevel of gene expression, and that their expressions can be induced by combinatorial treatments in lung cancer cells.
منابع مشابه
Influence of Histone Deacetylase Inhibitors and DNA-Methyltransferase Inhibitors on the NK Cell-Mediated Lysis of Pediatric B-Lineage Leukemia
Epigenetic drugs like histone deacetylase inhibitors (HDACi) and DNA-methyltransferase inhibitors (DNMTi) have been shown to be effective against a variety of tumor entities. Among different molecular anticancer activities of epigenetic active substances, up-regulation of natural killer (NK) cell ligands was described to contribute to an enhanced NK cell-mediated killing of tumor cell lines. So...
متن کاملSodium valproate, a histone deacetylase inhibitor, augments the expression of cell-surface NKG2D ligands, MICA/B, without increasing their soluble forms
MHC class I-related chain molecules A and B (MICA and B) expressed on the cell-surface of tumor cells are ligands for an activating receptor, NKG2D, expressed on natural killer (NK) cells and stimulate the NK cell-mediated cytotoxicity. On the other hand, the soluble form of MICA and B produced by proteolytic cleavage of cell-surface MIC interferes with NK cell-mediated cytotoxicity. We investi...
متن کاملTargeting the NF-κB Pathway as a Combination Therapy for Advanced Thyroid Cancer
NF-κB signaling plays an important role in tumor cell proliferation, cell survival, angiogenesis, invasion, metastasis and drug/radiation resistance. Combination therapy involving NF-κB pathway inhibition is an attractive strategy for the treatment of advanced forms of thyroid cancer. This study was designed to test the efficacy of NF-κB pathway inhibition in combination with cytotoxic chemothe...
متن کاملEpigenetic suppression of the antitumor cytotoxicity of NK cells by histone deacetylase inhibitor valproic acid.
Natural killer (NK) cells play an essential role in the fight against tumor development. The therapeutic use of autologous NK cells has been exploited to treat human malignancies, yet only limited antitumor activity is observed in cancer patients. In this study, we sought to augment the antitumor activity of NK cells using epigenetic approaches. Four small molecules that have been known to prom...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014